How do Design Decisions Affect the Distribution of
Software Metrics?

Marcos Dosea
Department of Information Systems
Federal University of Sergipe
Itabaiana, Sergipe - Brazil
Department of Computer Science
Federal University of Bahia
Salvador, Bahia - Brazil
dosea@ufs.br

ABSTRACT

Background. Source code analysis techniques usually rely on metric-
based assessment. However, most of these techniques have low
accuracy. One possible reason is because metric thresholds are
extracted from classes driven by distinct design decisions. Previous
studies have already shown that classes implemented according
to some coarse-grained design decisions, such as programming
languages, have different distribution of metric values. Therefore,
these design decisions should be taken into account when using
benchmarks for metric-based source code analysis. Goal. Our goal
is to investigate whether other fine-grained design decisions also
influence over distribution of software metrics. Method. We conduct
an empirical study to evaluate the distributions of four metrics
applied over fifteen real-world systems based on three different
domains. Initially, we evaluated the influence of the class design
role on the distributions of measures. For this purpose, we have
defined an automatic approach to identify the design role played by
each class. Then, we looked for other fine-grained design decisions
that could have influenced the measures. Results. Our findings show
that distribution of metrics are sensitive to the following design
decisions: (i) design role of the class (ii) used libraries, (iii) coding
style, (iv) exception handling, and (v) logging and debugging code
mechanisms. Conclusion. The distribution of software metrics are
sensitive to fine-grained design decisions and we should consider
taking them into account when building benchmarks for metric-
based source code analysis.

CCS CONCEPTS

» General and reference — Metrics; « Software and its engi-
neering — Software creation and management;

KEYWORDS
Design Decisions, Design Role, Metrics, Empirical Study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5714-2/18/05...$15.00
https://doi.org/10.1145/3196321.3196337

Claudio Sant’Anna
Department of Computer Science
Federal University of Bahia
Salvador, Bahia - Brazil
santanna@dcc.ufba.br

Bruno C. da Silva
Department of Computer Science &
Software Engineering
California Polytechnic State

University
San Luis Obispo, CA - USA
bedasilv@calpoly.edu

ACM Reference Format:

Marcos Dosea, Claudio Sant’Anna, and Bruno C. da Silva. 2018. How do
Design Decisions Affect the Distribution of Software Metrics?. In ICPC ’18:
ICPC ’18: 26th IEEE/ACM International Conference on Program Comprehension
, May 27-28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3196321.3196337

1 INTRODUCTION

Software engineers sometimes have to carry out software mainte-
nance activities to improve software design or to enhance program
comprehension. To support these activities, there are source code
analysis techniques that usually rely on metric-based assessment.
For instance, techniques for identifying code smells [20] rely on
metric-based detection strategies [7, 8, 33, 37]. A detection strategy
uses logical operators to combine metrics and theirs respective thre-
sholds to identify source code elements (usually classes or methods)
with structural characteristics that correspond to a certain code
smell [33]. A number of tools (e.g. PMD!, Checkstyle?, SonarQube>
and NDepend*) support metric-based analysis of source code. Howe-
ver, the accuracy of metric-based assessment is heavily influenced
by the calibration of thresholds for the used metrics [44].

Most of the existing metric-based assessment techniques are
based on generic thresholds. We have a generic threshold for a
given metric when we use the same single value for classifying
into categories (such as low or high) every class (or every method)
of one or more systems. For instance, Lanza and Marinescu [30]
classify as long any method that has more than 20 lines of code
(LOC) in Java systems. In this case, 20 is used as a generic threshold
for LOC.

Different approaches for calculating generic thresholds have
been proposed [2, 6, 19, 30, 48]. These approaches calculate thre-
sholds based on the distribution of metrics obtained from measure-
ment data over sets of software systems as benchmarks. However,
recent studies have shown that the distribution of metrics can vary
according to some design decisions made over classes or the whole
system [3, 23, 53]. Thus, a generic threshold may not make sense
for the entire set of classes in a system [31]. Zhang et al. [53], for
instance, show that application domain and programming language
are some of the design decisions that influence on the distribution
of metric values. Aniche et al. [3] show that metric distributions are

!http://pmd.sourceforge.net
Zhttp://checkstyle.sourceforge.net/
Shttps://www.sonarqube.org/
*http://www.ndepend.com/

https://doi.org/10.1145/3196321.3196337
https://doi.org/10.1145/3196321.3196337

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

different for sets of classes playing different architectural roles. For
instance, in an MVC-based system, a generic threshold value might
be too low for classes playing the View architectural role or too high
for classes playing the Controller role. This might, for instance, lead
to false code smell alarms or hide potential code smells. Both situa-
tions may hinder maintenance activities and developers’ perception
about the quality of the source code [26, 27, 39, 46, 51].

We hypothesize, however, that the design decisions studied so
far are too coarse-grained to explain the differences in the metrics
distribution. For instance, classes implemented with same pro-
gramming language (e.g. Java) and playing the same architectural
role (e.g. Repository) in different systems may use distinct persis-
tence libraries (e.g. JDBC or JPA for the Java platform). Thus, the
source code of classes playing the same architectural role and using
the same programming language in different systems may have
different distribution of metrics. Moreover, several classes are not
bound to any reference architecture (e.g. Spring MVC, Android).
For instance, in MVC-based systems, there are many classes that do
not assume the roles defined by this architectural pattern (e.g. Con-
troller or View). Therefore, guiding the source code analysis based
only on architectural roles might not cover a reasonable number of
classes.

In this paper, we carried out a study to investigate whether fine-
grained design decisions affect metrics distributions and, therefore,
should be taken into account when building benchmarks for metric-
based analysis of source code. We analyze the source code of fifteen
real-world open-source systems from three distinct domains (Eclipse
plugins, Android Applications and Web-based Systems). Over the
selected systems, we compute four metrics commonly used to assess
method maintainability and then we evaluate the effect of design
decisions on their distributions. We analyze the distributions over
class methods grouped according to what we call as design roles.
Design roles include architectural roles, but also include classes
whose responsibility is application-specific and not bound to any
particular reference architecture. For instance, buffering is a design
role for classes responsible for buffering data of a song before play-
ing it in music player applications.

Our investigation has three main perspectives. First, we inves-
tigate whether metric distributions vary between different design
roles of the same system. Second, we compare the metrics distribu-
tions of classes from different systems but having the same design
role. Our goal here is to verify whether other design decisions,
besides the design role, also affect metrics distributions. Finally,
we compare metric distributions of classes from the same design
role but over different stable releases of the same system. Since
releases of the same system tend to comprise the same design deci-
sions, our hypothesis here is that the distributions would not vary
significantly. We summarize our findings as follows:

e We found that different design roles from the same sys-
tem drive different metrics distributions. These findings ex-
tend the results obtained by Aniche et al., which considers
only architectural roles. Using the design role concept (our
approach) increases the number of classes that could be co-
vered and assessed, for instance, by different thresholds.

e We then investigated whether the distribution of metric
values of the same design role were similar across different

DO =

Marcos Désea, Claudio Sant’Anna, and Bruno C. da Silva

systems of the same domain. If this occurs, we should con-
sider building benchmarks with different systems that have
similar sets of design roles. However, we found that the same
design role (e.g. Persistence) can drive different distributions
of software measures in different systems. Then, we con-
ducted a manual and deep source code analysis to identify
what design decisions made such distributions different.

e Finally, we investigated if the distribution of metric values
of the same design role were similar across different re-
leases of a system. If this occurs, we should consider building
benchmarks with previous releases that underwent quality
review. The results we obtained show that in most of the
cases the same design role in a system did not vary signifi-
cantly throughout different releases.

The remainder of this paper is organized as follows. Section II
presents a motivating example. Section III presents our approach
to automatically identify and assign design roles to classes. Section
IV describes the settings of our empirical study to identify the
impact of design decisions on the distribution of metrics. Section
V presents the results of the study. Section VI discusses threats to
validity. Section VII discusses related work. Finally, Section VIII
presents conclusions and discusses implications of our research.

2 MOTIVATING EXAMPLE

The first goal of this motivating example is to illustrate that classes

playing the same design role, but in distinct systems, may have

different metric distributions. This example involves two open

source MVC-based web applications: LibrePlan® and WebBudget®.
LibrePlan is a project management, monitoring, and controlling tool,
whereas WebBudget is a personal financial management tool. We

downloaded the source code of both system from Github: WebBudget
on October 20th 2016 and LibrePlan on November 9th 2016.

Firstly, we computed the Lines of Code per Method (LOC/Method)
metric for methods of classes playing the Persistence design role in
both systems. We manually identified those classes. Both systems
use the Repository design pattern [1] and the Hibernate framework
[10] for implementing persistence. We observed that all Persistence
classes: (i) have the @Repository annotation or (ii) extend classes
or implement interfaces with the “Repository”, “DAO” or “Store”
tokens in their names.

Afterwards, we applied the Mann-Whitney U statistical test with
5% confident level and Bonferroni correction [32] to compare the
distribution of LOC/Method metric from WebBudget and LibrePlan
samples. The test result showed differences between the two sam-
ples. We then conducted a manual analysis on both samples and
noticed that methods from WebBudget use at least 50% more lines
of code than similar methods in LibrePlan system.

Listing 1: Query Example in Libreplan system.

public List<MaterialAssignment> getByMaterial (Material material) {
return (List<MaterialAssignment>) getSession().
createCriteria(MaterialAssignment.class).
add(Restrictions. eq("materialInfo.material",
material)).list();

Shttps://github.com/LibrePlan/libreplan
Shttps://github.com/arthurgregorio/web-budget

~Noun o) DO =

How do Design Decisions Affect the Distribution of
Software Metrics?

However, why does this happen if they use the same framework
(Hibernate) and design pattern (Repository)? We manually analyzed
their source code and found another design decision responsible
for that difference: coding style. To illustrate that, on the one hand,
we show on Listing 1 a method extracted from LibrePlan with
a single-line statement to query a database and return a list of
objects. On the other hand, Listing 2, extracted from WebBudget,
shows a similar query, but using five lines of code. One may argue
about the quality of both source code fragments, but both coding
styles are quite common in applications that use the Hibernate
framework and thus represent a design decision usually obeyed
by other classes on the same system [52]. In summary, this is an
example that different choices related to a single design decision
(coding style) may contribute to different metric distributions of
the same design role across different systems.

Listing 2: Query Example in WebBudget system.

public List<Movement> listByCardInvoice(CardInvoice cardInvoice) {

final Criteria criteria = this.getSession().
createCriteria(this.getPersistentClass());

criteria.createAlias("cardInvoice", "ci");

criteria.add(Restrictions.eq("ci.id",
cardInvoice.getId()));

criteria.addOrder (Order.desc("inclusion"));
return criteria.list();

This motivating example also aims to illustrate that only conside-
ring architectural or design roles bound to reference architectures,
as Aniche et al. [4] do, may leave most of the classes of a system
out of metric distribution analysis. For instance, we identified that
83.3% of LibrePlan classes and 79,8% of WebBudget classes do not
play any of the MVC architectural roles (e.g. Model, View, or Con-
troller). They are classes designed to solve specific problems of
each system specific context. For instance, Libreplan has a set of 40
classes with the design role of providing additional functionalities
to HTML components. All these classes extend the HtmlMacro-
Component abstract class. This group of classes may have specific
design characteristics and, as a consequence, their metric distri-
butions would be different from other system classes. Therefore,
it may be important to consider this design role when grouping
classes to analyze metric distribution.

3 HEURISTIC FOR IDENTIFYING DESIGN
ROLES

Our main hypothesis is that design role is an important design deci-
sion that may impact on the distribution of metric values. Therefore,
our empirical study (Section 4) takes into account the design role
of every class of the analyzed systems. Many different role con-
cepts have been proposed and discussed from different viewpoints
[18, 40, 49, 54]. We consider the concept Wirfs-Brock et al. defined
for software component design [50]. According to them, design
role is a set of related responsibilities assumed by an object to fit
into a community, such as, a framework or an enterprise architec-
ture. We decided to use this concept because a large number of
modern object-oriented systems are developed based on reference
architectures [9]. In such systems, design roles are assigned to one
or more classes through inheritance, interface implementation, or
class annotations. In this context, we defined a heuristic to auto-
matically identify the main design role played by each class. Our

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Table 1: Keywords and Proposed Predefined Design Roles

Keywords Standardized Design Role
DTO, Entity ENTITY
DAO, Repository, Storage PERSISTENCE
Activity ACTIVITY
Controller CONTROLLER

heuristic uses a customizable token-based method which considers
the syntactic structures of the class. In Section 6, we discuss possible
threats to validity to our decision of assign only a single design role
to each class.

The automatic identification of the design role a class plays is
not a trivial task for the following reasons:

a) the same design role, even in the same system, can be as-
signed to a class by different mechanisms. For instance, in
Spring MVC-based systems, a class playing the Controller
design role can get the @Controller annotation or extend
the AbstractController class.

b) the same design role can be assigned to a class by means
of different levels of inheritance in the same hierarchy of
classes. For instance, in Android applications, a class that
extends the Activity superclass plays the Activity design role.
Consider that the name of this class is PreferenceActivity. In
addition, classes that extend the class PreferenceActivity also
play the Activity design role.
the same design role may follow different naming patterns,
usually related to used design patterns or frameworks. For
instance, Repository and DAO (Data Access Object) are two
common design patterns used to implement the Persistence
design role. Superclasses or interfaces defining this design
role usually have the keywords “DAO” or “Repository” in
their names.

o
~

Based on these assumptions, we propose a keyword-based heuris-
tic to assign design roles to classes with six steps.

Step 1: Preparing the table of keywords and correspon-
ding predefined design roles. The heuristic receives as input
a table that associates keywords with corresponding design roles.
We call the design roles in this table as predefined design roles. Pre-
defined design roles are design roles that, based on our previous
knowledge of the domain, we know they are presented in a sys-
tem and also we know keywords related to them. Table 1 shows
examples of keywords and their corresponding design roles. For
instance, classes implementing interfaces that contain keywords
such as “Repository”, “DAO” or “Storage” in their names usually play
the Persistence design role. Based on the analysis of the three stu-
died domains and our previous experience as developers of systems
based on them, we built a table which is available on our website ’.
This table can be reused as it is or refined before starting the next
steps, which are, in fact, the automatic ones. It is important to note
in next steps that the predefined design roles are not the only ones
assigned to classes. The heuristic discovers other non-predefined
design roles during the process.

"https://sites.google.com/site/designdecisions2018/

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

Step 2: Assigning design roles by means of annotations.
Some architectures use class annotations to define the design role a
class plays. For example, in MVC-based systems, developers use the
@Service annotation to define that a class implements the Service
design role. However, class annotations can be placed with other
goals. For instance, the @deprecated annotation is used to indicate
a deprecated class. For this reason, our heuristic considers class
annotation to assign a design role to a class only if the annotation
is included in the set of keywords defined in Step 1.

Step 3: Assigning design roles by means of inheritance:
This step only applies for classes without a design role assigned to
them in the previous step. It assigns to a class the design role associ-
ated to the name of the superclass at the top of the inheritance tree
where that class is. This step considers two possibilities. The first
possibility holds if the name of the superclass contains a keyword
that matches with a keyword in the table defined in Step 1. In this
case, the heuristic selects the corresponding predefined design role
to assign to all subclasses. For instance, suppose a superclass called
AbstractController with different levels of subclasses. And suppose
that “Controller” is a keyword corresponding to the Controller pre-
defined design role (Step 1). All direct or indirect subclasses of
AbstractController would have the Controller design role assign
to them. When there is no keyword matching with the name of
the superclass, the second possibility holds: our heuristic creates a
new design role (non-predefined) named after the superclass and
associates it to its subclasses. Considering the same example, this
step would create an AbstractController design role. This step does
not consider Java platform classes as superclasses.

Step 4: Assigning design roles by means of implemented
interfaces: Again this step applies only for classes without a design
role assigned to them in the previous steps. It considers that classes
implementing the same set of interfaces should be grouped in
the same design role, as each possible set of interfaces can assign
different responsibilities to a class. Again, there are two possibilities.
First, if the name of at least one of the interfaces contains a keyword
that corresponds to a predefined design role (Step 1), then the prede-
fined design role is assigned to the all classes implementing the set
of interfaces. On the other hand, if there is no keyword matching
with the name of any interface, this step creates a new design role
and names it by using the names of the implemented interfaces
separated by comma and bounded by square brackets. For instance,
this step assigns the design role named [IRepository, Comparable]
to classes that implement IRepository and Comparable.

Step 5: Assigning the Entity design role: When the previous
steps fail to identify a class’ design role, this step applies. It assign
the Entity design role to classes that has non-static attributes and
has at least 90% of its methods starting with “get” or “set”. These
classes are responsible to encapsulate business model, including
rules, data, relationships, and sometimes persistence behavior. This
percentage can also be adjusted according to the evaluated system.

Step 6: Assigning the Undefined design role: When all pre-
vious steps fail to define a class’ design role, the heuristic assigns
to it a general design role called Undefined. This step is performed
when the class does not contain any structural elements that allows
the heuristic to associate other design role to it. For instance, the
Undefined design role is usually assigned to utility classes because

Marcos Désea, Claudio Sant’Anna, and Bruno C. da Silva

they generally do not use structural elements like inheritance or an-
notations. In fact, classes with the Undefined design role are classes
our heuristic was not able to cover. In Section 7 we discuss how our
heuristic increases the number of covered classes in comparison to
previous works. We also make some suggestions for future works
that might reduce the number of Undefined classes.

To support the proposed heuristic we developed a tool called
DesignRoleMiner®, also available in our website. The tool extends
the MetricMiner tool [47]. It mines project versions on GitHub
to identify the design roles of their classes. In addition, our tool
calculates the metrics used in our study, which are described in the
next section.

We carried out a preliminary evaluation of the heuristic and tool.
This evaluation involved five developers and five governmental
Web systems of a Secretary of State Treasury. Due to confidentiality
reasons we did not make the data obtained from these systems
available in our website. We selected this organization for con-
venience because one of the authors of this research had already
worked on it. We invited all 40 developers of the organization to
take part on the evaluation. Five of them accepted the invitation.
They have at least 12 years of experience as software developers
and 10 years working with Java. In addition, each of them is the
most experienced and leading developer of one of the five systems.
They have been leading maintenance and evolution tasks concern-
ing the design of the systems for at least 5 years. Each developer
evaluated the results of the heuristic for only one system, the one
he leaded. Here we call the systems as S1, S2, S3, S4 and S5. They
have 47, 70, 99, 181 and 808 classes respectively.

Each developer received a worksheet with the design role iden-
tification results generated by DesignRoleMiner. Each row of the
worksheet included: class name, the design role the heuristic as-
signed to the class, and a field for the developer to answer if he
agreed or not with the assignment. Each developer did that for all
classes of the system, except for classes the heuristic classified as
Undefined. They took between 30 to 120 minutes to finish it. The
number of classes of each system influenced the time each deve-
loper spent to conduct the analysis. For instance, the analysis of
S5, which is the largest system, required the longest period of time.
During the evaluation, the developers had access to the source code
of the system. They went to check the source code of some classes
but they did not find it necessary for every class.

The developers agreed with the design role the heuristic assign
to 1039 classes, which represents 86.2% of the total number of
classes (1205 classes). On the other hand, according to them, the
heuristic failed only for 15 classes (1.2%). The other 12.5% of the
classes (151 classes) received the Undefined design role. Figure
1 shows the results per system. All the 15 misclassified classes
belong to the system S5. Some misclassification occurred due to
programmer mistakes on the use of the enterprise architecture. For
instance, some classes were misclassified because they extended a
class responsible to define the application constants. Programmers
use this approach, which is not recommended, as a shortcut to
access constants. Other errors could be avoided with adjustments
in the table of keywords.

8https://github.com/marcosdosea/DesignRoleMiner

How do Design Decisions Affect the Distribution of
Software Metrics?

S5 Correct
54 i EFailed
53) EUndefined
52 1
51 1
0 200 400 600 800 1000

Figure 1: Evaluation of the Proposed Design Roles by System

The design roles assigned to the highest number of classes
were: Transaction (67.14%), Persistence (4.23%), Entity (5.98%), Back-
groundProcess (3.40%) and Abas (2,07%). Transaction is an imple-
mentation of the Command design pattern [21], in which each
action provided by the system is implemented in a class. This ex-
plains the high number of Transaction classes. Most of the classes
with the Undefined design role are concerned with the applica-
tion business logic. In fact, these classes did not use annotations,
inheritance or implement interfaces.

Although we need to perform a broader study to generalize
these results, we know that the structural mechanisms used by the
proposed heuristic are widely used by systems based on reference
architectures. We also tried to perform similar study with the 15
open source systems selected for our study on metric distributions.
We sent the results obtained with the heuristic to four active deve-
lopers of each system (60 requests). We sent two e-mails for each
selected developer containing a short message explaining the pur-
pose of the research and a form listing the design roles assigned to
each class. However, after 90 days, only two developers replied us
promising to answer the survey but we did not get any response.
For this reason, we restricted this initial evaluation of the heuristic
to the five governmental systems. However, we were not allowed
to use them in our metric distribution study due to confidentiality
reasons.

4 STUDY SETTINGS

The main goal of this study is to evaluate the impact of fine-grained
design decisions over distribution of metric values in systems of
the following domains: Web, Android and Eclipse Plugins. A high
impact may suggest that we should not overlook fine-grained design
decisions when building metric-based benchmarks for assessing
source code quality. For this purpose, we conceived the following
research questions (RQs) to guide our study.

RQ1 Is there a significant difference in the distribution of metric
values of different design roles in the same system

RQ2 Is there a significant difference in the distribution of metric
values of the same design role across different systems of the
same domain?

RQ3 Is there a significant difference among metric distributions
of the same design role across different releases of the same
system?

Through RQ1, we aim to investigate whether design role is a
design decision that affects metric distributions. With RQ2, our goal
is to evaluate whether other design decisions, besides design roles,

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

also influence the distribution of metrics values. Finally, through
RQ3, we aimed to verify whether there are decisions along the
releases of each system that change the design in a way that signi-
ficantly impact metrics values. The goal with RQ3 is also verifying
whether previous stable releases of the same system would be good
candidates to compose benchmarks. In some cases, modules of a
previous version, implemented or reviewed by a senior and expe-
rienced developer, for instance, may be the only source of design
decisions developers consider that fit to their context. To answer
these research questions we designed a study composed of three
major steps described in the following subsections.

4.1 Selecting Target Systems

Firstly, we searched on GitHub and selected fifteen real-world
systems developed in Java from three distinct domains: (i) Web
Applications; (ii) Mobile Applications for Android platform; and
(iii) Eclipse plugins. We chose three distinct domains implemented
in the same language (Java) because application domain and pro-
gramming language are recognized factors that impacts the distri-
bution of metrics [53]. The authors’ experience and knowledge on
the selected domains was also a requirement to allow the manual
analysis of the code planned for our empirical study. Moreover,
the selected domains are popular in the software development in-
dustry® (mainly the first two) and follow well-defined reference
architectures [36], which is an essential requirement to apply the
heuristic proposed in Section 3.

To select the systems from GitHub we used the following search
strings: “Eclipse plugin language:java”, “android language:java” and
“Web language:java”. We ordered the resulting lists according to
the number of repository forks. The goal was to select systems
with as many contributions as possible. Additionally, we excluded
frameworks, libraries, and systems not updated since January 2016.
Frameworks and libraries are out of scope of our study because
they usually follow very particular design decisions seldom shared
with other systems. We also excluded systems with no release
available because of RQ3. In order to select widely used Android
applications, we also only considered systems with at least 1,000
reviewers and 1,000 downloads. This information is only available
for Android applications at Google Play store. Then, we selected
the first five systems from the resulting list of each domain. The
sample corresponded to approximately 5% of the resulting list of
each domain.

Table 2 summarizes the main characteristics of the fifteen se-
lected systems. The #classes and #methods columns show the num-
ber of classes and methods in each system. The selected systems
have between 12 and 282 thousand lines of code (#LOC column)
and 08 and 224 contributors contributors (#contributors column).
The #releases column shows the number of stable releases available
in each system. The last column shows the commit date correspon-
ding to the source code we used in our study. Finally, the #design
roles column shows the number of design roles identified by our
heuristic (Section 3). For instance, SMS Backup+ system has six
predefined design roles (eg. Activity and Persistence), three non-
predefined design roles (eg. BroadCastReceiver) and the Undefined
design role, totaling 10 design roles.

“https://octoverse.github.com/

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

Design roles are usually domain-specific. For instance, Activity
is a design role typically found only in Android applications. Some
design roles are typically found in all systems of a domain. For
instance, Fragment and Service are common in Android applications.
However, each system is a unique design solution and normally
has some particular design roles. For instance, Exoplayer has the
Buffer and SimpleDecoder design roles for manipulation of audio
files. These design roles are hardly found in other Android systems.
This situation illustrates why the number of design roles are distinct
even among applications of the same domain.

Compared to previous works (see Section 7), our heuristic im-
proved the number of covered classes, i.e. classes the heuristic was
able to assign a design role different of the Undefined one. In fact, our
heuristic works better for systems whose classes are structurally
bound to a reference architecture. The higher is the number of
classes structurally bound to the reference architecture, the smaller
is the number of classes associated to the Undefined design role.
This is the reason for the differences on the number of Undefined
classes among the systems. For example, the Qalingo system has
only 5.6% of its classes associated with the Undefined design role.
However, the SMSBackup system has 40.5% of its classes as Unde-
fined. In Section 7, we detailed our plan to conduct future studies
to further reduce the number of classes assigned to the Undefined
design role.

4.2 Design Role Identification and Metric
Computation

In this step, we used our heuristic (Section 3) for identifying and
automatically assigning a design role to each class of the fifteen
systems. We used the DesignRoleMiner to do that as well as to
compute method-level metrics. It is important to highlight that
classes are grouped by design roles. As a consequence, methods
are grouped by their classes’ design roles. Therefore, each design
role constitutes a sample of method-level metric values. Our study
considered the following four metrics:

e McCabe’s Cyclomatic Complexity (CC) [35]: It counts
number of branching points of each method.

e Number of Method Parameters (NMP) [20]: It counts
the number of parameters of each method.

e Lines of Code (LOC) [30]: It counts the number of exe-
cutable statements of each method, excluding comments and
blank lines.

o Efferent Coupling (EC) [34]: It counts the number of classes
from which each method calls methods or accesses attributes.

We selected these method-level metrics because we can manually
compute them without tool support. This criterion is essential for
conducting the manual analysis planned for our study and identify-
ing the factors that impact on the distribution of metrics. Also, these
metrics are available in many tools [38] and have been successfully
used for fault-proneness prediction[5, 12, 24], for instance.

4.3 Comparing Distributions of Metric Values

In this step, we compare the distribution of values of each metric
according to the following configuration: (i) to answer RQ1, we
compare different design roles within each system, (ii) to answer
RQ2, we compare the same design role across different systems,

Marcos Désea, Claudio Sant’Anna, and Bruno C. da Silva

and (iii) to answer RQ3, we compare the same design role across
releases of each system.

To do that, we initially apply the Kruskal-Wallis test [45] using
the 5% significance level (i.e. p-value < 0.05). Kruskal-Wallis is a
non-parametric statistical test used to evaluate whether three or
more samples have similar distribution of values. When the null
hypothesis is rejected, the test indicates that at least one of the
samples has distribution of values different to the others. However,
it does not indicate what is that sample.

Therefore, if Kruskal-Wallis test rejects the null hypothesis, we
additionally apply a multiple comparison procedure to identify pairs
of samples with significant differences using the Mann-Whitney
U test with 5% confident level and Bonferroni correction [32]. The
result of this procedure is a table ordered according to the distance
between samples. In this way, the first and the last rows of the table
contain the most distant samples.

Finally we apply Cliff’s § [15] to quantify the importance of the
difference between distribution values of pairs of samples. To avoid
excessive comparisons, we only compare the most distant samples.
This is enough to verify whether there are at least two groups of
methods that has distinct distribution of metric values. We use
Romano et al. [41] approach to interpret the effect size based on
Cliff’s 8. Supposing § as effect size, ranging from -1to 1, | § |<0.147
means negligible effect, | § |<0.33 means small effect, | § |<0.474
means medium effect, and | § |>=0.474 means large effect. Cohen
[16] states that a small effect size is noticeably smaller than medium
but not so small as to be trivial, a medium effect size represents
an effect likely to be visible to the naked eye of a careful observer,
while large effect is noticeably larger than medium.

Therefore, we decided to use small, medium and large effect
sizes to consider that two samples of methods should be manually
analyzed. Effect sizes must be judged according to the context and
even small effects might be of practical importance [28].

5 RESULTS

In this section, we report and discuss the main findings of our study
guided by each research question.

ROQ1: Is there a significant difference in the distribution of metric
values of different design roles in the same system?

Motivation: If design roles affect the distribution of metric
values, we should consider taking them into account when building
metric-based benchmarks.

Method: To examine the overall impact of design roles on each
metric and system, we test the following null hypothesis.

HO;: there is no difference in the distributions of metric values
among all design roles in the same system.

For each system, we execute the steps described in Section 4.3
four times, one for each metric. If, using Cliff’s §, we find a large,
medium or small difference between the most distant design roles,
this means that, for the analyzed system and metric, there are at
least two design roles with significantly different metric distribu-
tions. So, we can answer “yes” to RQ1. Our website provides R
scripts for replication purposes.

Findings: All 60 executions of the Kruskal-Wallis test (four
metrics times fifteen systems) reject the null hypothesis (H01). This
means that at least one design role has distribution of values distinct

How do Design Decisions Affect the Distribution of
Software Metrics?

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Table 2: Target Systems Summary

Domain System Description #classes #methods #LOC #releases #contributors #design roles #Commit Date
Bitcoin Wallet Bitcoin payment system 111 1407 25K 138 21 9 2016-10-07
Exoplayer Media player 429 4532 84K 63 41 27 2016-10-06
Android Applications K-9 Mail Email client 488 6913 109K 344 150 23 2016-04-13
SMS Backup+ SMS backup tool 118 921 12K 78 39 10 2016-07-08
Talon for Twitter Twitter client 312 3391 83K 1 8 12 2016-04-03
Activiti Designer BPMN editor 704 3768 74K 19 11 51 2016-08-18
Angular]S Eclipse Plugin Editor to Angular]S 106 653 12K 19 10 14 2016-07-03
Eclipse Plugins Arduino IDE for Eclipse IDE for Arduino hardware 124 1180 24K 5 25 12 2016-04-04
Drools and jBPM IDE for Drools and jBPM 796 6936 107K 76 43 54 2016-12-09
SonarLint Eclipse Plugins Feedback about quality issues. 200 1178 18K 45 12 20 2016-12-12
BigBlueButton Conferencing system for on-line learning 1537 11377 176K 20 65 56 2016-10-18
OpenMRS Patient-based medical record system 1066 12195 210K 115 224 37 2016-10-12
Web Applications Heritrix Portal for web-crawling 567 4950 90K 2 22 34 2016-07-21
alingo -commerce system 956 13836 147 4 9 18 2016-09-25
ling: E 3% K
LibrePlan Project management tool 1541 23278 282K 32 28 35 2016-11-09
100 22 Regarding the LOC metric, Figure 2 shows BodyPart, Persistence
x . . .
75 L5 and AsyncTask design roles. BodyPart involves methods ranging
8 £ . . ; .
= S from 3 to 6 lines of code. Entity and Exception are other design
2 g roles (not shown in Figure 2) with similar distributions. In fact,
£ £ . .
a25 S5 methods from these design roles have a low number of lines of
> . .
—== & o i L code because they are usually only responsible for encapsulating
(o 1.,,9« oo ¥ data. In the Persistence and AsynkTask design roles, methods have
o NS 2 (@' . . .
® oe®® pet® ¥ < maximum value of 21 and 53 lines of code, respectively. In fact,
g classes assigned to AsynkTask are responsible for more complex
o g5 tasks, such as automatically updating mail folders.
10 o : ; i
s & Figure 2 shows the Entity, Fragment and Transport design roles
< 5.0
< 2 to illustrate differences regarding the CC metric. These three design
] K . .
K] 51 =25 roles present, respectively, 3, 6 and 11 as CC maximum value. In fact,
2
=] . . . ege
" * 5 implementing domain entities (Entity design role) is quite simpler
S 00 ——
5 E s ™ than implementing message transport following security protocols
AO et wo® z . Al . . .
o poe? “0\-\&'\0“‘ ?aé‘s (Transport design role). Using the same threshold for assessing

Figure 2: Distributions of Metrics of K-9 Mail System

from the others. In addition, when comparing the two most distant
pairs of design roles, we obtained Cliff’s § corresponding to large
effect size for 57 of the 60 combinations of metrics and systems
(95%). For the other 3 combinations (5%), we obtained Cliff’s §
corresponding to medium effect size. These results mean that for
all systems and metrics there are significant differences between
the distributions of metric values of at least two design roles.
Most of the design roles compared with Cliff’s § comprise more
than 15 methods. Therefore, we consider them as representative.
For the Android application domain, 85% of the design roles taken
into account have from 15 to 958 methods. For the Web application
domain, 84.6% have between 25 to 4088 methods. Finally, for the
Eclipse Plugin domain, 79.1% have from 15 and 223 methods.
Figure 2 illustrates some differences between the distributions
of values of design roles from the K-9 Mail Android application. It
shows four graphs with three box plots each. Each graph is about
one of the four metrics. The box plots on the ends of each graph
correspond to design roles with distribution largely different from
each other (large effect size). The box plot on the middle shows
the distribution of values of a design role with medium or small
difference to the other two (medium or small effect size.)

methods of both design roles might lead to false negatives or false
positives.

Regarding the efferent coupling metric, the maximum values
obtained for the three design roles shown in Figure 2 are 4, 7, 14,
respectively. Methods associated to the Notification design role have
higher efferent coupling because they call other parts of the mobile
device to notify changes in the email box state. Finally, regarding
number of parameters, Figure 2 shows design roles with 0, 2 and
6 as maximum values. The methods associated to the Test design
role, for instance, have a very low number of parameters because
each method usually is responsible to test only one method. Me-
thods associated with AsyncTask design role have more parameters
because they implement application business logic, which requires
more information as input parameters.

Another interesting point, is that we noticed a large number of
outliers in the Undefined design role. An outlier is an observation
that appears to deviate from other observations in a sample. This
finding is expected because, in fact, the Undefined design role ends
up accommodating classes for which our heuristic was not able to
identify a design role using syntactic structures. Classes associated
with Undefined design role are more likely to be developed following
distinct design decisions.

In summary, the significant differences we observed on metric
distributions of distinct design roles, allow us to answer RQ1 as
follows:

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

Table 3: Cliff’s § Interpretation

Effect LOC CC EC NMP
Large 02 01 09 09
Medium 12 05 11 05
Small 16 14 09 10

Negligible 02 04 03 03

Design roles affect the distribution of metric values. Therefore,
we should consider taking design roles into account when using
benchmarks for metric-based source code analysis.

RQ2: Is there a significant difference in the distribution of metric
values of the same design role across different systems of the same
domain?

Motivation: In RQ1, we found that design roles affect metric
distributions. However, can we group together classes of the same
design role but from different systems when building benchmarks?
Or do different systems have other design decisions for the same
design role that make metric distributions distinctive for different
systems?

Method: To address RQ2, we test the following null hypothesis.

HOy: there is no difference among distributions of metric values of
the same design role across systems of the same domain.

For that, we only took into account design roles present in at
least two systems of the same domain. We restrict the comparison
among systems of the same domain, because systems of different
domains barely have design roles in common developed with similar
design decisions. We compared the distributions of the same design
role in different systems. For each design role, we execute the steps
described in Section 4.3 four times, one for each metric. If, using
Cliff’s 8, we find a large, medium or small difference between the
most distant systems, this means that, for that design role and
metric, there are at least two systems with significantly different
metric distributions. When this occurs, we manually investigate the
source code trying to identify if any design decision in particular is
responsible for that difference.

Findings: For Android applications, we evaluated 10 prede-
fined design roles (eg. Activity and Service) and one non-predefined
(BroadcastReceiver). For the Eclipse plugins domain, we considered
nine predefined design roles (eg. Dialog and View) and nine non-
predefined (eg. Plugin and AbstractHandler). Finally, for the Web
application domain, we analyzed 11 predefined design roles (eg.
View and Persistence) and five non-predefined (eg. Validator and
DispatcherServlet). Also, we examined the Undefined design roles
for the three domains. In total, we analyzed 46 design roles (the
Undefined design role counts three times, one for each domain).
Some design roles are present on all five systems of the domain.
For instance, this is the case of the Activity and Persistence design
roles in the Android domain. Other design roles are present in some
of the systems. For example, BroadCastReceiver is present in only
three systems of the Android domain.

For each design role, we executed the statistical tests four times,
one for each metric, totaling 192 tests (48 times 4). The null hypothe-
sis (HO02) was rejected in 115 of the 192 tests. For these cases, we
applied the multiple comparison procedure and the Cliff’s § to quan-
tify the size of the difference between the two systems with highest

Marcos Désea, Claudio Sant’Anna, and Bruno C. da Silva

difference among the samples. Table 3 summarizes the Cliff’s §
results. It shows, for each metric, the number of design roles per
effect size found. For instance, for the EC metric, we found large
effect size for nine design roles and medium effect size for eleven
design roles. The full table with individual results for each design
role and metric is available on our website. Then, we manually
analyzed the source code of all design roles for which we found
small, medium or large effect sizes. The goal was to find out which
design decisions contributed to the difference between the systems.
In the following subsection, we discuss the design decisions we
identified. In some cases, more than one of them contribute to the
difference regarding the same design role.

A. Used Libraries: We found the use of distinct libraries as one
design decision that makes metric distributions of the same design
role significantly different when comparing different systems. The
Persistence design role is a clear example of this. We identified the
use of distinct persistence mechanisms or libraries across systems of
the three domains. This affected the distributions of the metrics in
the three domains. In the Android application domain, for instance,
we found medium effect size for LOC and EC and large effect size
for NMP when comparing the Persistence design role of Bitcoin
Wallet and SMS Backup+. The Bitcoin Wallet application uses both
the ContentProvider Android native library and SQLiteDatabase to
share and persist data, respectively. We observed that 90% of the
Persistence methods in Bitcoin Wallet range from 3 to 29 lines of
code. On the other hand, the SMS Backup+ only uses native Android
libraries to open, read, and store SMS and MMS messages. This
mechanism is simpler because it does not use database libraries.
Then, we observed that 90% of the Persistence methods in SMS
Backup+ range from 2 to 11 lines of code. Another example of
the use of different libraries occurs with the Test design role. For
instance, we found medium effect size for LOC and EC metrics when
comparing the LibrePlan and BigBlueButton systems. The former
uses libraries for implementing integration test while the latter uses
libraries for unit testing. Implementing unit tests is usually simpler
than implementing integration tests.

B. Coding Style: We also identified coding style as a design
decision that affected the distribution of metric values. For instance,
we found medium effect size for the EC and LOC metrics when
comparing the Persistence design role of Qalingo and OpenMRS
Web applications. Both systems use the Hibernate framework to
implement persistence. However, developers of Qalingo decided
to use the Criteria mechanism, a type-safe way to express queries
in Hibernate. Although some methods in OpenMRS also use the
Criteria mechanism, most methods use Hibernate Query Language
(HQL), a non-type-safe way to express queries. Both mechanisms
are common in systems using Hibernate, but source code using
HOQL usually needs fewer lines of code and uses fewer external
classes. These results complement the study of Higo et al. [25] that
reports the effect of coding style on the LOC metric.

C. Exception Handling, Logging and Debugging Code: We
also observed cases in which decisions related to Exception Han-
dling, Logging or Debugging affected metric distributions. For
instance, we found medium effect size for the EC metric when com-
paring the Service design role of Bitcoin Wallet and SMS Backup+
Android applications. Methods in Bitcoin Wallet contain try-catch
blocks to handle exceptions, while most of SMS Backup+ methods

How do Design Decisions Affect the Distribution of
Software Metrics?

throw exceptions rather than handle them. The efferent coupling is
higher in Bitcoin Wallet methods due to references to other classes
within catch blocks.

Regarding Logging and Debugging, we found significant diffe-
rences of EC and LOC when comparing the Service design role of
K-9 Mail and SMS Backup+. This occurs due to code snippets used
to log actions when the application is executed in debug mode.
This is a common mechanism developers use to debug Android
applications. However, in K-9 Mail developers placed this logging
code in Service methods, while SMS Backup+ developers placed it
in methods related to the Activity design role, causing differences
on metric distributions.

In summary, the significant differences we observed on metric
distributions when comparing design roles common to different
systems, allow us to answer RQ2 as follows:

Design decisions related to a design role may make metric
distributions for this design role different in distinct systems.
Therefore, we should be aware of other design decisions, not
only design roles, when building benchmarks for metric-based
source code analysis.

RQ3: Is there a significant difference among metric distributions
of the same design role across different releases of the same system?

Motivation: In RQ2, we found that different systems may have
different metric distributions for the same design role due to different
design decisions. This means that only considering design roles to
group classes when building or using benchmarks with different
systems may not be enough to have accurate metric-based source
code analysis.

A possible alternative is to use previous system releases as a
benchmark. Evidently, the idea is to use well designed releases or
releases that underwent source code quality review. Following this
idea, it is important to investigate if there are design decisions along
system releases that change the design in a way that significantly
affect metric values.

Method: To address RQ3, we test the following null hypothesis.

HO03: there is no difference on the distribution of metric values of
the same design role across different releases of the same system.

For that, we decided to compare the release considered in the
investigation of RQ1 and RQ2 with the three most recent preceding
releases. We did that for each system. We did not make an exhaus-
tive analysis of all releases because very old releases are likely
to be very different from recent ones. All releases we used in our
study are available on our website. We also decided to only consider
design roles with variation on the number of lines of code higher
than 1% between at least two of the analyzed releases. Variations
smaller than 1% of LOC hardly imply differences on the distribution
of metric values. Finally, for each design role, we executed the steps
described in Section 4.3 four times, one for each metric. If, using
Cliff’s 8, we find a large, medium or small difference between the
most distant releases, this means that, for that design role and met-
ric, there are at least two releases with significantly different metric
distributions. In this case, we manually investigate the source code
to identify the reasons behind the difference.

Findings: For the Android application domain, we evaluated
36 design roles. Thus, considering the four studied metrics, we
executed 144 Kruskal-Wallis tests (36 times 4). The null hypothesis

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

(HO03) was only rejected in 11 tests. For these 11 pairs of design role
and metric, we performed the multiple comparison procedure and
calculated the effect size between the most distant releases. The
effect size was negligible in 10 tests. Only EC metric for the Persis-
tence design role presented small effect size. The reason was that
the persistence mechanism underwent some refactoring changes
along the releases, such as the extract class refactoring.

For the Eclipse Plugins, we evaluated 51 design roles. We per-
formed 204 Kruskal-Wallis tests (51 times 4), one for each metric.
The null hypothesis H03 was only rejected in 7 tests. Then, we
obtained negligible effect size for five of these seven pairs of design
role and metric. Only two of them presented small effect size. This
occurred for the Trackable design role in Sonarlint and the LOC
metric due to some simpler classes created from one release to
the other within this design role. Similar reason affected the NOP
metric for the Undefined design role. Some new simpler methods
were also created and associated to this design role.

Finally, for Web Applications, we evaluated 59 design roles and
executed the Kruskal-Wallis test for each metric, totaling 236 tests
(59 times 4). The null hypothesis H03 was only rejected in 31 tests.
We calculated the effect size using Cliff’s § and found six cases with
small effect size and four cases with medium effect size. Three cases
of small effect size involved the LOC, CC and EC metrics and the
Entity design role in the OpenMRS system. The differences occurred
because the developers decided to exchange the library for gene-
rating reports. The other three cases of small effect size involved
LOC, CC and EC and the View design role in the OpenMRS system.
In this case, the developers also decided to use a simpler library
for implementing entity searches. Cases of medium effect size also
occurred due to changes of libraries. For instance, developers of
BigBlueButton modified the MessageHandler design role to change
the message handling mechanism, which affects the distribution of
EC from one release to the other. Also, developers of the Libreplan
system decided to use a different library to deal with time, which
affects the distribution of NOP of the TimeTrackerState design role.

In summary, we only observed very few cases of significant
differences on metric distributions when comparing design roles
across different releases. This allow us to answer RQ3 as follows:

Differences on the distribution of metrics across different stable
releases may not be frequent. Therefore, we should consider tak-
ing previous releases into account when building benchmarks
for metric-based source code analysis.

6 THREATS TO VALIDITY

This section discusses the threats to validity of our study following
common guidelines [29].

Internal validity. There might be a threat associated with the
correctness of the tool we used to calculate metrics and identify
design roles. DesignRoleMiner extends the MetricMiner tool [47],
which was already used in other studies [4, 42]. Also, we manually
checked many metric values and identified design roles. Moreover,
we evaluated our tool and heuristic for design role identification
by means of a study with developers and Web-based governmental
systems, as described in Section 3. Other possible threat is that
some classes may accommodate more than one design role, but

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

we assign only the most prominent design role according to our
proposed heuristic. Although this overlapping of responsibilities
is not considered adequate in object-oriented systems [11], future
studies could assess the impact of having classes with multiple
design roles and their effect on metric distribution.

Construction validity. There is a possible threat related to metrics
we selected for our study. The selected method-level metrics cover
important aspects of source code quality and are widely used for
software fault prediction [14, 22]. Errors in calculating metrics
may also occur [2]. However, these errors are usually small and to
minimize these interferences we use the Kruskal-Wallis and Cliff’s
J statistical tests.

External validity. Some of the findings might be specific to the
selected software systems and domains assessed. To minimize this
bias, we discussed in Section 4.1 some well-defined and replicable
criteria for selecting representative systems in each application
domain. Although other domains use similar mechanisms to imple-
ment the architecture, we still intend to extend this investigation
other systems and domains. We also do not claim that the design
decisions considered in this study are the only design decisions that
impact metric distributions. However, they were the most evident
in the systems involved in our study. Future studies with other
systems may evidence new design decisions impacting on the dis-
tribution of metric values. So, although we are restricted to the
systems and domains analyzed, this is an important step toward
improving the accuracy of metric-based assessment of source code.

7 RELATED WORK

Some studies have assessed the effect of coarse-grained design de-
cisions on the distribution of software metrics. Zhang et al. [53]
discuss that distribution of metric values depends greatly on the
context of the project. They found six context factors that affect the
distribution of at least 20 metrics. Programming language, applica-
tion domain, and lifespan are three most important factors impac-
ting over distribution values of 80% of the metrics. Therefore, our
work complements it as we found fine-grained design decisions
that also influence the distribution of metric values.

Aniche et al. [3] show that architectural roles affect the distribu-
tion of metric values. For example, a class playing the architectural
role Controller, in an MVC-based system, has a different distribution
of metric values from other architectural roles. However, they were
able to identify and associate architectural roles to only 17.5% of the
classes in MVC-based systems and 10.5% of the classes in Android
applications. Consequently, metric-based assessments following
such approach would disregard the design roles played by the rest
of the classes. We deepen this discussion by showing that other
design decisions also impact on metrics. We propose a heuristic
that could correctly identify the class design role of 86.2% of the
1039 analyzed classes from five governmental systems. Considering
the 15 selected systems used in our study, our heuristic was able
to propose design role to 62.1% from Android classes, 73.5% for
Eclipse classes and 77.2% for Web Classes. Therefore, the Undefined
design role was assigned to 37.9% from Android classes, 26.5% for
Eclipse classes and 22.8% for Web ones. As future work, we plan to
investigate whether integrating other techniques, such as concern
mining [49], to our heuristic improves the coverage and accuracy

Marcos Désea, Claudio Sant’Anna, and Bruno C. da Silva

of design role identification. Additionally, we identified that others
design decisions also affect the distribution of metric values.

Budi et al. [13] propose a classification framework using a ma-
chine learning technique that predicts a stereotype for each class.
The heuristic identifies three class stereotypes (Entity, Control,
and Boundary) introduced as an extension to the standard UML
[43]. Dragan et al. [17] extends this set of class stereotypes to C++
systems. The approach uses patterns of the method stereotype dis-
tributions at the class level. Both approaches propose predefined
stereotypes used in the analysis phase. Our approach to identify the
design role played by classes could be used to define stereotypes
focused on the design and implementation phases. We propose to
use the class hierarchy and a customizable token-based method that
is not limited to a predefined set of design roles. In the future, we
plan to assess whether the stereotypes benefits, related to program
comprehension, design recovery, and identification of code smells
could be obtained with the design role information.

8 CONCLUSION

We performed an empirical study to assess whether fine-grained
design decisions affect the distribution of four method-level metrics.
Our analysis was driven by the concept of design role. We consider
design role itself as a design decision in the sense that the develo-
per decide to assign a responsibility to a class in the context of a
reference architecture. To support our study, we defined a heuristic
to automatically identify the design role played by the classes of a
system. The study involved fifteen real-world systems, from three
different domains. The results and their implications for research
and practice can be summarized as follow.

Design roles impact the distribution of metrics. Initially, our results
showed that design roles affected the distribution of metrics (RQ1).
A potential implication of this is that future researches should pro-
pose and evaluate metric-based analysis methods that take design
roles into account. In fact, the major reason for the occurrence of
false positive and negatives on smell detection methods is the lack
of context for metric thresholds[44]. Design roles might be consi-
dered to define this context. For instance, methods that use system
benchmarks to calculate metric thresholds could derive thresholds
according to design roles.

Fine-grained design decisions impact the distribution of metrics.
Our results also showed that, due to different design decisions (for
instance, coding style or used libraries) the same design role might
have different metric distributions on different systems (RQ2). A
potential implication of this is that we should select systems with
similar design decisions when building benchmarks for metric-
based source code analysis. In addition, our results showed that
differences on metric distributions across different releases were
not frequent (RQ3). A practical implication of this is that companies
should consider building their benchmarks from system releases
that underwent design quality reviews.

In this context, as future work, we plan to investigate if deriving
thresholds based on design roles and previous releases would im-
prove the accuracy for detecting source code elements with design
problems. Also, we suggest extending this study with more systems,
programming languages, metrics and domains.

How do Design Decisions Affect the Distribution of
Software Metrics?

ACKNOWLEDGMENTS
This work was supported by CNPq (grant 312153/2016-3).

REFERENCES

(1]
(2]

3

=

(4]

&

8

=

[9

=

[10

[11

[12]

[13]

(18]

[19]

[20

[21]

[22]

[23]

[24]

[25]

Deepak Alur, John Crupi, and Dan Malks. 2003. Core J2EE Patterns. 650 pages.
Tiago L. Alves, Christiaan Ypma, and Joost Visser. 2010. Deriving Metric Thre-
sholds from Benchmark Data. In Proceedings of the 2010 IEEE International Con-
ference on Software Maintenance (ICSM °10). IEEE Computer Society, Washington,
DC, USA, 1-10.

Mauricio Aniche, Christoph Treude, Andy Zaidman, Arie Van Deursen, and
Marco Aurélio Gerosa. 2016. SATT: Tailoring Code Metric Thresholds for
Different Software Architectures. In Proceedings of the 16th IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM). Raleigh,
North Carolina.

M. F. Aniche. 2015. Detection strategies of smells in web software development.
In 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 598-601.

F Arcelli Fontana, V Ferme, A Marino, B Walter, and P Martenka. 2013. Investi-
gating the Impact of Code Smells on System’s Quality: An Empirical Study on
Systems of Different Application Domains. In 29 IEEE International Conference
on Software Mainteinance. IEEE, 260-269.

Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Aiko Yamashita.
2015. Automatic Metric Thresholds Derivation for Code Smell Detection. In
IEEE/ACM 6th International Workshop on Emerging Trends in Software Metrics.
IEEE, 44-53.

Roberta Arcoverde, Isela Macia, Alessandro Garcia, and Arndt von Staa. 2012.
Automatically Detecting Architecturally-relevant Code Anomalies. In Proceedings
of the Third International Workshop on Recommendation Systems for Software
Engineering (RSSE ’12). IEEE Press, Piscataway, NJ, USA, 90-91.

Vipin Balachandran. 2013. Reducing Human Effort and Improving Quality in Peer
Code Reviews Using Automatic Static Analysis and Reviewer Recommendation.
In Proceedings of the 2013 International Conference on Software Engineering (ICSE
’13). IEEE Press, Piscataway, NJ, USA, 931-940.

Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture in Practice
(3rd ed.). Addison-Wesley Professional.

Christian Bauer, Gavin King, and Gary Gregory. 2015. Java Persistence with
Hibernate, Second Edition. Manning Publications. 608 pages.

Grady Booch. 1986. Object-oriented development. IEEE transactions on Software
Engineering 2 (1986), 211-221.

Alexandre Boucher and Mourad Badri. 2018. Software metrics thresholds calcula-
tion techniques to predict fault-proneness: An empirical comparison. Information
and Software Technology 96 (2018), 38 — 67.

Aditya Budi, David Lo, Lingxiao Jiang, Shaowei Wang, et al. 2011. Automated
Detection of Likely Design Flaws in Layered Architectures. In 23rd International
Conference on Software Engineering and Knowledge Engineering (SEKE).

Cagatay Catal and Banu Diri. 2009. A systematic review of software fault predic-
tion studies. Expert systems with applications 36, 4 (2009), 7346-7354.

Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin 114, 3 (1993), 494.

Jacob Cohen. 1992. A power primer. Psychological bulletin 112, 1 (1992), 155.
Natalia Dragan, Michael L Collard, and Jonathan I Maletic. 2010. Automatic
identification of class stereotypes. In Software Maintenance (ICSM), 2010 IEEE
International Conference on. IEEE, 1-10.

Marc Eaddy, Alfred Aho, and Gail C. Murphy. 2007. Identifying, Assigning,
and Quantifying Crosscutting Concerns. In Proceedings of the First International
Workshop on Assessment of Contemporary Modularization Techniques (ACoM *07).
IEEE Computer Society, Washington, DC, USA.

Kecia A.M. Ferreira, Mariza A.S. Bigonha, Roberto S. Bigonha, Luiz F.O. Mendes,
and Heitor C. Almeida. 2012. Identifying thresholds for object-oriented software
metrics. Journal of Systems and Software 85, 2 (feb 2012), 244-257.

Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing
code. Addison-Wesley Professional, Boston, MA, USA.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design
patterns: Abstraction and reuse of object-oriented design. In European Conference
on Object-Oriented Programming. Springer, 406-431.

Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C Gall. 2012.
Method-level bug prediction. In Proceedings of the ACM-IEEE international sym-
posium on Empirical software engineering and measurement. ACM, 171-180.
Joseph Yossi Gil and Gal Lalouche. 2016. When do Software Complexity Metrics
Mean Nothing?-When Examined out of Context. Journal of Object Technology 15,
1(2016), 2-1.

Yossi Gil and Gal Lalouche. 2017. On the correlation between size and metric
validity. Empirical Software Engineering 22, 5 (01 Oct 2017), 2585-2611.

Y. Higo and S. Kusumoto. 2017. Flattening Code for Metrics Measurement and
Analysis. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 494-498.

[26]

[27]

[28

[29

[30

)
=

[37

[38

[39

=
=

[41

[42]

[43]

'S
&

[45

[46

[47

[48

[49]

[50

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

Mario Hozano, Henrique Ferreira, Italo Silva, Baldoino Fonseca, and Evandro
Costa. 2015. Using Developers’ Feedback to Improve Code Smell Detection. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC ’15).
ACM, New York, NY, USA, 1661-1663.

Mario Hozano, Alessandro Garcia, Baldoino Fonseca, and Evandro Costa. 2018.
Are you smelling it? Investigating how similar developers detect code smells.
Information and Software Technology 93 (2018), 130 — 146.

Vigdis By Kampenes, Tore Dyb4, Jo E Hannay, and Dag IK Sjgberg. 2007. A
systematic review of effect size in software engineering experiments. Information
and Software Technology 49, 11 (2007), 1073-1086.

Barbara Kitchenham, Hiyam Al-Khilidar, Muhammad Ali Babar, Mike Berry,
Karl Cox, Jacky Keung, Felicia Kurniawati, Mark Staples, He Zhang, and Liming
Zhu. 2006. Evaluating Guidelines for Empirical Software Engineering Studies. In
Proceedings of the 2006 ACM/IEEE International Symposium on Empirical Software
Engineering (ISESE "06). ACM, New York, NY, USA, 38-47.

Michele Lanza and Radu Marinescu. 2006. Object-Oriented Metrics in Practice.
Springer Berlin Heidelberg, Berlin, Heidelberg. 205 pages.

Luigi Lavazza and Sandro Morasca. 2016. An Empirical Evaluation of Distribution-
based Thresholds for Internal Software Measures. In Proceedings of the The 12th
International Conference on Predictive Models and Data Analytics in Software
Engineering. ACM, New York, NY, USA, Article 6, 10 pages.

Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50-60.

Radu Marinescu. 2004. Detection strategies: Metrics-based rules for detecting
design flaws. In Proceedings of IEEE International Conference on Software Mainte-
nance.

Robert Cecil Martin. 1995. Designing object-oriented C++ applications. Prentice
Hall.

Thomas J. McCabe. 1976. A Complexity Measure. In Proceedings of the 2Nd
International Conference on Software Engineering. IEEE Computer Society Press,
Los Alamitos, CA, USA.

Nenad Medvidovic and Richard N. Taylor. 2010. Software Architecture: Founda-
tions, Theory, and Practice. In Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 2 (ICSE ’10). ACM, New York, NY,
USA, 471-472.

Willian Oizumi, Alessandro Garcia, Leonardo da Silva Sousa, Bruno Cafeo, and
Yixue Zhao. 2016. Code anomalies flock together. Proceedings of the 38th Interna-
tional Conference on Software Engineering - ICSE 16 (2016), 440-451.

Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Claudio Sant’Anna.
2017. On the evaluation of code smells and detection tools. Journal of Software
Engineering Research and Development 5, 1 (06 Oct 2017), 7.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-
drea De Lucia. 2014. Do they really smell bad? a study on developers’ perception
of bad code smells. In Software maintenance and evolution (ICSME), 2014 IEEE
international conference on. IEEE, 101-110.

Dirk Riehle and Thomas Gross. 1998. Role Model Based Framework Design and
Integration. (1998), 117-133.

Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda
Devine. 2006. Exploring methods for evaluating group differences on the NSSE
and other surveys: Are the t-test and Cohen’sd indices the most appropriate
choices. In annual meeting of the Southern Association for Institutional Research.
Citeseer.

D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker, M. Palyart, and
G. C. Murphy. 2016. Comparing Repositories Visually with RepoGrams. In
2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
109-120.

James Rumbaugh, Ivar Jacobson, and Grady Booch. 2004. The Unified modeling
language reference manual. Pearson Higher Education.

Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal
of Systems and Software 138 (2018), 158 — 173.

David J. Sheskin. 2007. Handbook of Parametric and Nonparametric Statistical
Procedures (4 ed.). Chapman & Hall/CRC.

Dag LK. Sjoberg, Aiko Yamashita, Bente C.D. Anda, Audris Mockus, and Tore
Dyba. 2013. Quantifying the Effect of Code Smells on Maintenance Effort. IEEE
Transactions on Software Engineering 39, 8 (aug 2013), 1144-1156.

Francisco Zigmund Sokol, Mauricio Finavaro Aniche, Marco Gerosa, et al. 2013.
MetricMiner: Supporting researchers in mining software repositories. In Source
Code Analysis and Manipulation (SCAM). IEEE, 142-146.

Gustavo Andrade Do Vale and Eduardo Magno Lages Figueiredo. 2015. A Method
to Derive Metric Thresholds for Software Product Lines. In 29th Brazilian Sym-
posium on Software Engineering. 110-119.

S. Wang, D. Lo, Z. Xing, and L. Jiang. 2011. Concern Localization using Infor-
mation Retrieval: An Empirical Study on Linux Kernel. In 2011 18th Working
Conference on Reverse Engineering. 92—96.

Rebecca Wirfs-Brock and Alan McKean. 2003. Object design: roles, responsibilities,
and collaborations. Addison-Wesley Professional.

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

[51] Aiko Yamashita. 2013. How Good Are Code Smells for Evaluating Software Main-
tainability? Results from a Comparative Case Study. In 2013 IEEE International
Conference on Software Maintenance. IEEE, 566-571.

[52] Daogqi Yang. 2010. Java Persistence with JPA. Outskirts Press.

[53] Feng Zhang, Audris Mockus, Ying Zou, Foutse Khomh, and Ahmed E. Hassan.
2013. How Does Context Affect the Distribution of Software Maintainability
Metrics?. In IEEE International Conference on Software Maintenance. 350-359.

[54] H. Zhu and M. Zhou. 2008. Roles in Information Systems: A Survey. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
38, 3 (May 2008), 377-396.

Marcos Désea, Claudio Sant’Anna, and Bruno C. da Silva

